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A GALERKIN APPROXIMATION METHOD
INCLUDING SPACE DIMENSIONAL
REDUCTION - APPLIED FOR SOLUTION
OF A HEAT CONDUCTION EQUATION

Abstract

A multivariate data fitting procedure, based on talerkin minimization
method, is studied in this paper. The main idethefdeveloped approach
consists in projecting the set of data points frime original, higher-
dimensional space, onto a line section. Then, fhgraimation problem
is solved in the resulting one-dimensional spadee €laborated recipe
can be designed so that it is computationally mefécient than the
schemes based on the least squares minimizati@p@tiormance of the
method is studied by comparison with the least sgpuand the moving
least squares procedures in a number of exampietjding the solution
of the heat diffusion equation.

1. INTRODUCTION

Numerical solution of engineering and scientifiolems is most often
equivalent to solution of some approximation tdskhe framework of standard
finite element method (FEM) this is accomplished d®fining interpolation
functions over local subdomains of various shapesl these functions are
frequently chosen from the space of polynomialsargples can be found in the
textbooks [1][2]. In the area of mesh-free or driee methods, broadly
discussed in the paper [3] and subsequently, famgke, in the work [4], local
representation of an unknown function is commotdtamed by using the least
squares or the weighted least squares fit. If tkeeht function is defined at
each point at which the approximation is to be @atd then such an approach
is named the moving least squares (MLS) method &ndthoroughly
characterized in the reference [5]. Further insigta the method can be found
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in the work [6], where the analysis of error estésais given. The benefits of
the MLS fit are well reflected by its wide appliat range, incorporating the
solution schemes for the partial differential equrzs.

Excellent smoothing properties of the MLS fit iscapied, however, by
increased computation times, relative to the peréorces of the other
approximation methods. Therefore, efforts are uadlen to improve its
efficiency, and the work reported in [7] can seras an example. An
improvement of the MLS methodology, named the agxprate MLS
approximation, is also discussed in a series oepgmcluding references [8]
and [9]. This method has advantage of being métee-for a certain class of
problems and therefore robust. Its disadvantagleeofg not enough exact for
irregularly spaced data seems to be overcame lgtete approximations
described in the report [10].

A somewhat different approach to approximationnuiltivariate data is
studied in the current paper. Its main idea cosisistprojection of the set of
data points from the original, higher-dimensionphce onto a line section.
Then, instead of the least squares minimizatioe, @alerkin minimization
procedure is applied for finding the coefficients approximation function.
Certain gain in the computational efficiency canstbe attained, as the solution
of an approximation problem is accomplished inraatisionally reduced space.
The description of the method is given in the tvime&hsional setting, but it
seems to be straight forward applicable also tcemariables.

2. GALERKINFIT

A set of scattered function-value d&ta {Fi(x;) : XOD, j=1...n} is defined
on a closed domain I R°. For simplicity of presentation, it is assumed
throughout the paper thdt2. A local approximani=p(x)a to the dat& is built
by using a polynomial approximation basis @d,-...pm], Which is linear
[1,x,y] when m=3, quadratic [X,y,xy,X,y] if m=6 or it may be any other
complete basis. The vector of coefficients a ideoestablished in the fitting
procedure, which is outlined below.

First, the approximation errors are definedAFy = p(x)a - Fj(x) for each
node in the original region D. Then, the nodespgected onto a line section
A O R, where they are distributed equidistantly, asstiated in Fig. 1.
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Fig. 1. Theidea of approximation by using space dimensional reduction

The equidistant distribution of the nodesdns an arbitrary assumption of the
developed method, originating from the observattmat only the nodal values
themselves - and not the distances between thdspoiare quantities being
unchanged in the projection.

An approximation subspaaé = {y;°(x), j=1...n} is then associated with,
where the basis functiomz;ID are simple 'hat' functionsliE1 or are higher order
polynomials. Now, the 'distribution’ of the appnmstion error in the resultant
one-dimensional subspace can be expressed in ¢étmes basisy,—IO as follows:

AF = Y [p(x; Ja=F; 1w (0), (1)

where x=,}} represents the original coordinates ards the coordinate
measured along.. Consequently, the Galerkin minimization is pemrfed for
each nodé=1...n, according to the expression
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J 4F trPdx= [ 3 [p(x; Ja=F; Ty} (x) 0" (x)x @

and when usual transformations are done, a linedrixrequation is obtained,
which contains the unknown coefficients a,

Ca=b (3)

In the above equation, the elements of matrix @ given by the

. _ b b .
expressiorC, = ZAJ. pk(xj ), where Ai,-—,[ AViV dXx | vector a containm
unknownsa,;, a,...a, and the right-hand-side vector elements are defime

relations Pi= Zj AgFi L 1tis clear, that the number of nodes shouldreatgr
or equal to the dimension of the approximation sp@zm). Therefore, the
matrix C has dimensionxm and to solve the above equation, one can proceed
as follows. Ifn=m then a simple interpolation problem is solvedaf+1, the
row corresponding to the central node can be atlledch other row and then
the equation (3) can be solved with a quadratiaim&. If n>m+1, the above
procedure can be repeated for the central node thedexcessive rows,
corresponding to the nodes which are most distam the central one, can be
summed up together to obtain mrm matrix again.

Alternatively, the procedure can be presented iforan of projection,
resulting in the following compact representatiénhe approximant:

{=pa=pC ‘b= pC 'AF= oF , C)

or, in a more detailed version,
¢= Z (% Fk (5)

with the basis functions defined by
P = Z(C_lA)q P; - (6)
j=1

At this point, a short reference to the standdMFLS and MLS methods
seems to be due. In each case, the approximatidrepn is defined by matrices
C=AP, where P=[p p,,..., p]', and®=p(C'A), but the matrix A has various
compositions, depending on the method, which cafobed, for example, in
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the textbook [2]. Particularly, A=P", Ay.<=P'W, where W is a diagonal matrix
containing weights and#=I (an identity matrix). It follows from our previs
considerations that &, is a tridiagonal matrix, composed of triplets (1263,
1/6), if v are linear functions (b=1), and has greater badidhyiif ;" are
higher-order polynomials.

The above remarks can be concluded with the statemather commonly
apprehended, that, if computational efficiency emsidered, the FEM is the
most competitive among the methods and the ML$iasl¢ast effective one.
The Galerkin fit with its tridiagonal matrix 4 follows the FEM. Another order
of precedence is most probably predicated whemtb#hods are compared in
terms of their approximation accuracy. This issustudied further in the text,
where the results of a number of numerical tegpagsented.

3. GALERKIN FIT APPLIED FOR SOLVING A HEAT
CONDUCTION EQUATION

An approach to derive an approximate solution he unsteady heat
conduction equation is studied below. The problendefined in the spatio-
temporal region D X0, t,), wheret,,; denotes the total computing time. With
the temperaturel=T(x, t) as the main variable and with constant material
propertiesy, the governing equation for heat conduction, togetwith the
boundary and initial conditions, is as follows:

T,

—= T D x (0, tiop,

P u in D x (0, toy

T= f(xt) onaD x (0, t, @

T=T, in D x {0},

wheredD denotes the boundary of the region D.

An approximated solution to the above differenéquation can be obtained
by coupling spatial discretization, performed wiltie developed method, with
any recipe for temporal differentiation. In thiseexplary application, the
simplest algorithm suitable for performing compandests among the studied
methods is chosen. Thus, the Euler time differenatgorithm yields the
scheme

T =T + At uD?T) (®)
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Wheref and f+ denote the initial condition and the approximatelditson ati-

th node, respectively, and the tefy T is expressed in the local basis defined
by Eq. (6) as follows:

(wD?T) = ﬂzk:(chok T, . ©)

wherek=1, 2..i...n are indexes of the nodes surrounding, and inclingenode
i

This way a point collocation method is obtained [2]), however, application
of the weighted Galerkin formulation for the sphaaproximation is also not
precluded. Consequently, the Eqg. (8) can servehmrcomparison among the
four above discussed methods in terms of their a@mation quality. This
issue is addressed in the next section.

4 TESTSAND RESULTS
4.1. Local approximation errors

In the first group of tests, the local Galerkintfas been compared with the
least squares (LS) and the moving least squaresSjMinethods. The
comparison has been based on an interpolation d®arapalyzed by
Zienkiewicz [2], illustrated here in Fig. 2 witHl&d circles.

original points @
added points O

DA o =W A oo
&

Fig. 2. Data set for the comparison test

Additional points are introduced for the purposeha current study, to enable
approximations to be done with the 2-nd order potgials, and these points are
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illustrated in Fig. 2 with the empty circles. Ah (singular) pattern of nodes is
realized by relocating one of them to obtain foodes alined.

Tables 1-2 show approximation errors computedttier singular and non-
singular nodal patterns. The Galerkin methodolagperformed by relying on
the linear ¢;* = Gal) basis functions, illustrated in Fig. 1.dt the cases the
guadratic approximation basis p is usedys®. Table 1 shows the results for
the 6-node setup of nodes, i.e. for the interpotatase. The Galerkin fit is for
that case more efficient than the LS and MLS tempies, however, for singular
pattern of nodes, it gives worse results thanatsterparts.

Tab. 1. Interpolation errors: 6 nodes

normal setup singular setup
method central node mean central ngde mean
LS 0 0 1.053 6.473
MLS 0 0 0.264 2.499
Gal 0 0 -1.472 8.129

Tab. 2. Approximation errors: 8 nodes

normal setup singular setup
method central node mean central ngde mean
LS 0.144 0.115 1.000 0.426
MLS 0.013 0.227 0.265 1.511
Gal 0.125 0.192 2.212 1.261

Table 2 itemizes the errors for the 8-node sten@ihe superior performance
of the MLS fit over all other methods is observédh& central node. However,
if the mean error is studied, the best result§@uad for the LS approximation
method, followed by Gal fit. A 7-node stencil haseh studied also, but the
results of Galerkin method in this case were mosatisfactory.

4.2. Solution of the heat conduction equation

The above discussed methods are now applied ®rstdtution of heat
conduction problem described in the preceding sectiThe differential
equation (7) has been solved under the initial tmm
T(x,y,0)=singx)+sin(zy) and with the boundary conditiong0,y,t)=T(1,y,t)=
exp(xnt) sin@y) and T(x,0,t)=T(x,1,t)=exp(art) Bin@x). The analytical
solution to this problem is given by the functioR(x,y,t)= exp(gz’t) 7
(sin(@x)+sin(zy)).

The computations have been performed using regalad random
distribution of nodes in the domain D, which is whoin Fig. 3. The random

54



distribution of the nodes is obtained by applyihg following transformation to
the regular node,y,):

X = X + r x5, (10a)
y, =y +rtyls, (10b)

wherer is a random number generated with C function d48(d & and ¢ are
fractions (here 0.15) of the inter-nodal distanee®ls=1 ors=-1, depending on
the location of within the intervak0,1) subdivided into ten equal subintervals.

(a) (b)
1 T T T T
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0.4 |:
0.2 |
0 R T R
0 02 04 06 08 1 0 02 04 06 08 1

Fig. 3. Regular (a) and irregular (b) nodal arrangements
for the heat conduction test

The convergence of the method (8) is illustratedpectively, in Fig. 4 and
in Fig. 5 in terms of theé,-norm error. Each figure contains two plots, faz 63
and 8-node local approximation setups. The erroes pdotted for the three
above discussed approximation approaches. It shibgldnentioned that the
approximation nodes are collected around each loeater in an automatic
manner. Searching algorithms from the ANN libradi][ are used for that
purpose.
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Fig. 4. Convergence plots of the average error for theregular arrangement of nodes
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Fig. 5. Convergence plots of the average error for theirregular arrangement of nodes



A second-order convergence is attained unifornylyalh the methods when
the nodes are distributed regularly, see the cinslenation on the plots in Fig.
4. With the irregular nodal arrangement, the cogeece deteriorates to about
1-st order, and the Gal approximations are a llgks accurate then the least
squares methods.

5. CONCLUSIONS

From the present study, the following conclusiarem be drawn. The
approximation method based on dimensional reductemd Galerkin
minimization yields results comparable to the L8 84L.S methods.

The developed method is computationally more effitithan the LS and
MLS fits and attains similar accuracy, whether thedes are distributed
regularly or irregularly in the 2-D region, usingnd order polynomials and 6-
or 8-node stencils.

The method has been successfully applied in a4finreshautomatic, explicit
solver of the unsteady heat conduction equatiorseéms that the obtained
results are encouraging to undertake further inyatsons in this area, including
approximation in 3-D domains, other approximatiorasés and other
applications.
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