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Abstract 

A multivariate data fitting procedure, based on the Galerkin minimization 
method, is studied in this paper. The main idea of the developed approach 
consists in projecting the set of data points from the original, higher-
dimensional space, onto a line section. Then, the approximation problem 
is solved in the resulting one-dimensional space. The elaborated recipe 
can be designed so that it is computationally more efficient than the 
schemes based on the least squares minimization. The performance of the 
method is studied by comparison with the least squares and the moving 
least squares procedures in a number of examples, including the solution 
of the heat diffusion equation. 

 
 
1. INTRODUCTION 
 

Numerical solution of engineering and scientific problems is most often 
equivalent to solution of some approximation task. In the framework of standard 
finite element method (FEM) this is accomplished by defining interpolation 
functions over local subdomains of various shapes, and these functions are 
frequently chosen from the space of polynomials. Examples can be found in the 
textbooks [1][2]. In the area of mesh-free or grid-free methods, broadly 
discussed in the paper [3] and subsequently, for example, in the work [4], local 
representation of an unknown function is commonly obtained by using the least 
squares or the weighted least squares fit. If the weight function is defined at 
each point at which the approximation is to be evaluated then such an approach 
is named the moving least squares (MLS) method and is thoroughly 
characterized in the reference [5]. Further insight into the method can be found 
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in the work [6], where the analysis of error estimates is given. The benefits of 
the MLS fit are well reflected by its wide application range, incorporating the 
solution schemes for the partial differential equations. 

Excellent smoothing properties of the MLS fit is occupied, however, by 
increased computation times, relative to the performances of the other 
approximation methods. Therefore, efforts are undertaken to improve its 
efficiency, and the work reported in [7] can serve as an example. An 
improvement of the MLS methodology, named the approximate MLS 
approximation, is also discussed in a series of papers including references [8] 
and [9]. This method has advantage of being matrix-free for a certain class of 
problems and therefore robust. Its disadvantage of being not enough exact for 
irregularly spaced data seems to be overcame by iterated approximations 
described in the report [10]. 
 A somewhat different approach to approximation of multivariate data is 
studied in the current paper. Its main idea consists in projection of the set of 
data points from the original, higher-dimensional space onto a line section. 
Then, instead of the least squares minimization, the Galerkin minimization 
procedure is applied for finding the coefficients of approximation function. 
Certain gain in the computational efficiency can thus be attained, as the solution 
of an approximation problem is accomplished in a dimensionally reduced space. 
The description of the method is given in the two-dimensional setting, but it 
seems to be straight forward applicable also to more variables. 
 
 
2. GALERKIN FIT 
 
 A set of scattered function-value data F = {Fj(xj) : xj∈D, j=1…n} is defined 
on a closed domain D ⊆ Rd. For simplicity of presentation, it is assumed 
throughout the paper that d=2. A local approximant ζ=p(x)a to the data F is built 
by using a polynomial approximation basis p=[p1,p2,…,pm], which is linear 
[1,x,y] when m=3, quadratic [1,x,y,xy,x2,y2] if m=6 or it may be any other 
complete basis. The vector of coefficients a is to be established in the fitting 
procedure, which is outlined below. 
 First, the approximation errors are defined by ∆Fj = p(xj)a - Fj(xj) for each 
node in the original region D. Then, the nodes are projected onto a line section 
Λ ⊆ R1, where they are distributed equidistantly, as illustrated in Fig. 1.  
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Fig. 1. The idea of approximation by using space dimensional reduction 
 

The equidistant distribution of the nodes on Λ is an arbitrary assumption of the 
developed method, originating from the observation that only the nodal values 
themselves - and not the distances between the points - are quantities being 
unchanged in the projection. 
 An approximation subspace Vn = {ψj

b(x), j=1…n} is then associated with Λ, 
where the basis functions ψj

b are simple 'hat' functions if b=1 or are higher order 
polynomials. Now, the 'distribution' of the approximation error in the resultant 
one-dimensional subspace can be expressed in terms of the basis ψj

b as follows: 
      

(x)]ψF)a[p(x=∆F b
jj

j
j −∑ , (1) 

 
where x={x,y} represents the original coordinates and x is the coordinate 
measured along Λ. Consequently, the Galerkin minimization is performed for 
each node i=1…n, according to the expression 
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and when usual transformations are done, a linear matrix equation is obtained, 
which contains the unknown coefficients a, 
 

Ca= b . (3) 

 
 In the above equation, the elements of matrix C are given by the 

expressions ∑ )(xpA=C jkijik , where Aij =∫ Λ ψ i
bψ j

bdx , vector a contains m 

unknowns a1, a2…am and the right-hand-side vector elements are defined by 

relations bk=∑ j
Akj F j . It is clear, that the number of nodes should be greater 

or equal to the dimension of the approximation space (n≥m). Therefore, the 
matrix C has dimension n×m and to solve the above equation, one can proceed 
as follows. If n=m then a simple interpolation problem is solved. If n=m+1, the 
row corresponding to the central node can be added to each other row and then 
the equation (3) can be solved with a quadratic matrix C. If n>m+1, the above 
procedure can be repeated for the central node and the excessive rows, 
corresponding to the nodes which are most distant from the central one, can be 
summed up together to obtain an m×m matrix again. 
 Alternatively, the procedure can be presented in a form of projection, 
resulting in the following compact representation of the approximant: 
 

ζ= pa= pC− 1b= pC− 1 AF=ΦF , (4) 

 
or, in a more detailed version, 
 

ζ=∑
k
φk Fk , (5) 

 
with the basis functions defined by 
 

∑ −
m

=j
jkjk pA)(C=φ

1

1 . (6) 

 
 At this point, a short reference to the standard FEM, LS and MLS methods 
seems to be due. In each case, the approximation problem is defined by matrices 
C=AP, where P=[p1, p2,…, pn]

T, and Φ=p(C-1A), but the matrix A has various 
compositions, depending on the method, which can be found, for example, in 
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the textbook [2]. Particularly, ALS=PT, AMLS=PTW, where W is a diagonal matrix 
containing weights and AFEM=I (an identity matrix). It follows from our previous 
considerations that AGal is a tridiagonal matrix, composed of triplets (1/6, 2/3, 
1/6), if ψi

b are linear functions (b=1), and has greater bandwidth, if ψi
b are 

higher-order polynomials. 
 The above remarks can be concluded with the statement, rather commonly 
apprehended, that, if computational efficiency is considered, the FEM is the 
most competitive among the methods and the MLS is the least effective one. 
The Galerkin fit with its tridiagonal matrix AGal follows the FEM. Another order 
of precedence is most probably predicated when the methods are compared in 
terms of their approximation accuracy. This issue is studied further in the text, 
where the results of a number of numerical tests are presented. 
 
 
3. GALERKIN FIT APPLIED FOR SOLVING A HEAT 

CONDUCTION EQUATION 
 
 An approach to derive an approximate solution to the unsteady heat 
conduction equation is studied below. The problem is defined in the spatio-
temporal region D × 〈0, ttot〉, where ttot denotes the total computing time. With 
the temperature T=T(x, t) as the main variable and with constant material 
properties µ, the governing equation for heat conduction, together with the 
boundary and initial conditions, is as follows: 
 

Tµ=
t

T 2∇
∂
∂

 in D × 〈0, ttot〉, 

t)f(x,=T  on ∂D × (0, ttot〉, 
 

T= T0   in D × {0}, 

(7) 

 
where ∂D denotes the boundary of the region D. 
 An approximated solution to the above differential equation can be obtained 
by coupling spatial discretization, performed with the developed method, with 
any recipe for temporal differentiation. In this exemplary application, the 
simplest algorithm suitable for performing comparison tests among the studied 
methods is chosen. Thus, the Euler time differencing algorithm yields the 
scheme 
 

ii
+

i T)(µ∆t+T=T 2~~ ∇⋅ , (8) 
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where iT
~

and +
iT

~
denote the initial condition and the approximated solution at i-

th node, respectively, and the term µ∇ 2T is expressed in the local basis defined 
by Eq. (6) as follows: 
 

∑ ∇∇
k

kki T)φ(µ=T)(µ
~22 , (9) 

 
where k=1, 2…i…n are indexes of the nodes surrounding, and include, the node 
i. 
This way a point collocation method is obtained (cf. [2]), however, application 
of the weighted Galerkin formulation for the spatial approximation is also not 
precluded. Consequently, the Eq. (8) can serve for the comparison among the 
four above discussed methods in terms of their approximation quality. This 
issue is addressed in the next section. 
 
 
4. TESTS AND RESULTS 
 
4.1. Local approximation errors 
 
 In the first group of tests, the local Galerkin fit has been compared with the 
least squares (LS) and the moving least squares (MLS) methods. The 
comparison has been based on an interpolation example analyzed by 
Zienkiewicz [2], illustrated here in Fig. 2 with filled circles. 
   

 
Fig. 2. Data set for the comparison test 

 
Additional points are introduced for the purpose of the current study, to enable 
approximations to be done with the 2-nd order polynomials, and these points are 
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illustrated in Fig. 2 with the empty circles. An ill (singular) pattern of nodes is 
realized by relocating one of them to obtain four nodes alined. 
 Tables 1-2 show approximation errors computed for the singular and non-
singular nodal patterns. The Galerkin methodology is performed by relying on 
the linear (ψi

1 = Gal) basis functions, illustrated in Fig. 1. In all the cases the 
quadratic approximation basis p is used, so m=6. Table 1 shows the results for 
the 6-node setup of nodes, i.e. for the interpolation case. The Galerkin fit is for 
that case more efficient than the LS and MLS techniques, however, for singular 
pattern of nodes, it gives worse results than its counterparts. 
 

Tab. 1. Interpolation errors: 6 nodes 
 normal setup singular setup 
method central node mean central node mean 
LS 0 0 1.053 6.473 
MLS 0 0 0.264 2.499 
Gal 0 0 -1.472 8.129 

 
Tab. 2. Approximation errors: 8 nodes 
 normal setup singular setup 
method central node mean central node mean 
LS 0.144 0.115 1.000 0.426 
MLS 0.013 0.227 0.265 1.511 
Gal 0.125 0.192 2.212 1.261 

 
 Table 2 itemizes the errors for the 8-node stencils. The superior performance 
of the MLS fit over all other methods is observed at the central node. However, 
if the mean error is studied, the best results are found for the LS approximation 
method, followed by Gal fit. A 7-node stencil has been studied also, but the 
results of Galerkin method in this case were more unsatisfactory. 
 
4.2. Solution of the heat conduction equation 
 
 The above discussed methods are now applied for the solution of heat 
conduction problem described in the preceding section. The differential 
equation (7) has been solved under the initial condition 
T(x,y,0)=sin(πx)+sin(πy) and with the boundary conditions T(0,y,t)=T(1,y,t)= 
exp(-µπ2t) ⋅ sin(πy) and T(x,0,t)=T(x,1,t)=exp(-µπ2t) ⋅ sin(πx). The analytical 
solution to this problem is given by the function T(x,y,t)= exp(-µπ2t) ⋅ 
(sin(πx)+sin(πy)). 
 The computations have been performed using regular and random 
distribution of nodes in the domain D, which is shown in Fig. 3. The random 
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distribution of the nodes is obtained by applying the following transformation to 
the regular nodes (xi,yi): 
 

sdxr+x=x i
'
i ⋅⋅ , 

 

(10a) 
 

sdyr+y=y i
'
i ⋅⋅ , (10b) 

  
where r is a random number generated with C function drand48(), dx and dy are 
fractions (here 0.15) of the inter-nodal distances, and s=1 or s=-1, depending on 
the location of r within the interval 〈0,1〉 subdivided into ten equal subintervals. 
 

Fig. 3. Regular (a) and irregular (b) nodal arrangements  
for the heat conduction test 

 
 The convergence of the method (8) is illustrated, respectively, in Fig. 4 and 
in Fig.  5 in terms of the L2-norm error. Each figure contains two plots, for the 6- 
and 8-node local approximation setups. The errors are plotted for the three 
above discussed approximation approaches. It should be mentioned that the 
approximation nodes are collected around each local center in an automatic 
manner. Searching algorithms from the ANN library [11] are used for that 
purpose. 
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Fig. 4. Convergence plots of the average error for the regular arrangement of nodes 

 
 
 

 
Fig. 5. Convergence plots of the average error for the irregular arrangement of nodes 
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 A second-order convergence is attained uniformly by all the methods when 
the nodes are distributed regularly, see the curve inclination on the plots in Fig.  
4. With the irregular nodal arrangement, the convergence deteriorates to about 
1-st order, and the Gal approximations are a little less accurate then the least 
squares methods. 
 
 
5. CONCLUSIONS 
 
 From the present study, the following conclusions can be drawn. The 
approximation method based on dimensional reduction and Galerkin 
minimization yields results comparable to the LS and MLS methods.  

The developed method is computationally more efficient than the LS and 
MLS fits and attains similar accuracy, whether the nodes are distributed 
regularly or irregularly in the 2-D region, using 2-nd order polynomials and 6- 
or 8-node stencils. 
 The method has been successfully applied in a mesh-free, automatic, explicit 
solver of the unsteady heat conduction equation. It seems that the obtained 
results are encouraging to undertake further investigations in this area, including 
approximation in 3-D domains, other approximation bases and other 
applications. 
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